Downloads provided by UsageCounts
handle: 20.500.12614/1313
Motivated by a recent experiment (Sanchez-Yamagishi et.al, arXiv:1602.06815) reporting evidence of helical spin-polarized edge states in layer-biased twisted bilayer graphene under a magnetic flux, we study the possibility of stabilising a Quantum Spin Hall (QSH) phase in such a system, without Zeeman or spin-orbit couplings, and with a QSH gap induced instead by electronic interactions. We analyse how magnetic flux, electric field, interlayer rotation angle, and interactions (treated at a mean field level) combine to produce a pseudo-QSH with broken time-reversal symmetry, and spin-polarized helical edge states. The effect is a consequence of a robust interaction-induced ferrimagnetic ordering of the Quantum Hall ground state under an interlayer bias, provided the two rotated layers are effectively decoupled at low energies. We discuss in detail the electronic structure, and the constraints on system parameters, such as the angle, interactions and magnetic flux, required to reach the pseudo-QSH phase. We find, in particular, that purely local electronic interactions are not sufficient to account for the experimental observations, which demand at least nearest-neighbour interactions to be included.
8 pages, 3 figures
Majorana modes, Condensed Matter - Mesoscale and Nanoscale Physics, Interactions, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences, Quantum spin Hall, Twisted bilayer graphene, Topology, Landau levels
Majorana modes, Condensed Matter - Mesoscale and Nanoscale Physics, Interactions, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences, Quantum spin Hall, Twisted bilayer graphene, Topology, Landau levels
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 22 | |
| downloads | 11 |

Views provided by UsageCounts
Downloads provided by UsageCounts