
Among $\sim 160$ of the multiple exoplanetary systems confirmed, about $30\%$ of them have neighboring pairs with a period ratio $\leq 2$. A significant fraction of these pairs are around mean motion resonance (MMR), more interestingly, peak around 2:1 and 3:2, with a clear absence of more closely packed MMRs with period ratios less than 4:3, regardless of planet masses. Here we report numerical simulations demonstrating that such MMR behavior places important constraints on the disk evolution stage out of which the observed planets formed. Multiple massive planets (with mass $\geq 0.8$ $M_{\rm Jup}$) tend to end up with a 2:1 MMR mostly independent of the disk masses but low-mass planets (with mass $\leq 30$ $M_{\oplus}$) can have MMRs larger than 4:3 only when the disk mass is quite small, suggesting that the observed dynamical architecture of most low-mass-planet pairs was established late in the disk evolution stage, just before it was dispersed completely.
5 pages, 5 figures, accepted for publication in ApJ Letters
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
