Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal Letters
Article . 2011 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2011
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ON THE ORIGIN OF THE SALPETER SLOPE FOR THE INITIAL MASS FUNCTION

Authors: Oey, M. S.;

ON THE ORIGIN OF THE SALPETER SLOPE FOR THE INITIAL MASS FUNCTION

Abstract

We suggest that the intrinsic, stellar initial mass function (IMF) follows a power-law slope gamma=2, inherited from hierarchical fragmentation of molecular clouds into clumps and clumps into stars. The well-known, logarithmic Salpeter slope GAMMA=1.35 in clusters is then the aggregate slope for all the star-forming clumps contributing to an individual cluster, and it is steeper than the intrinsic slope within individual clumps because the smallest star-forming clumps contributing to any given cluster are unable to form the highest-mass stars. Our Monte Carlo simulations demonstrate that the Salpeter power-law index is the limiting value obtained for the cluster IMF when the lower-mass limits for allowed stellar masses and star-forming clumps are effectively equal, m_lo = M_lo. This condition indeed is imposed for the high-mass IMF tail by the turn-over at the characteristic value m_c ~ 1 M_sun. IMF slopes of GAMMA ~ 2 are obtained if the stellar and clump upper-mass limits are also equal m_up = M_up ~ 100 M_sun, and so our model explains the observed range of IMF slopes between GAMMA ~ 1 to 2. Flatter slopes of GAMMA = 1 are expected when M_lo > m_up, which is a plausible condition in starbursts, where such slopes are suggested to occur. While this model is a simplistic parameterization of the star-formation process, it seems likely to capture the essential elements that generate the Salpeter tail of the IMF for massive stars. These principles also likely explain the IGIMF effect seen in low-density star-forming environments.

Accepted by ApJ Letters; 5 pages, 1 figure

Country
United States
Keywords

Physics, Science, Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%
Green
gold