<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A newly patterned electrode is designed for a dielectric liquid lens. The electrode has a radial interdigitated structure which can provide a symmetrical-nonuniform fringing field. This electric field can effectively deform the shape of a dielectric liquid droplet in radial direction, causing the focal length of the liquid droplet to change. For a lens using glycerol as the droplet and optical oil (SL-5267) as the surrounding medium, its focal length (f) can be tuned in the range of ???8.28????f???????4.4 mm, when the applied voltage is changed from 0 to 120 Vrms. In contrast to previous approaches, the liquid lens with radial interdigitated electrode has the advantages of scalable aperture size, wide variability of focal length, and good optical characteristics. Moreover, the driving voltage is insensitive to the size of the droplet.
DIELECTROPHORESIS, adaptive lens, CRYSTAL, DROPLET, imaging, Optics, tunable focus, FORCE, dielectrophoretic force, MICROLENS, MANIPULATION, VOLTAGE
DIELECTROPHORESIS, adaptive lens, CRYSTAL, DROPLET, imaging, Optics, tunable focus, FORCE, dielectrophoretic force, MICROLENS, MANIPULATION, VOLTAGE
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |