
Abstract In this paper, we show that introductory physics students may initially conceptualise Cartesian coordinate systems as being fixed in a standard orientation. Giving consideration to the role that experiences of variation play in learning, we also present an example of how this learning challenge can be effectively addressed. Using a fine-grained analytical description, we show how students can quickly come to appreciate coordinate system movability. This was done by engaging students in a conceptual learning task that involved them working with a movable magnetometer with a printed-on set of coordinate axes to determine the direction of a constant field (Earth’s magnetic field).
Other Physics Topics, movability, Didactics, magnetic field, Annan fysik, physics problem solving, Didaktik, variation theory, Cartesian coordinate systems
Other Physics Topics, movability, Didactics, magnetic field, Annan fysik, physics problem solving, Didaktik, variation theory, Cartesian coordinate systems
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
