Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nonlinearityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nonlinearity
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nonlinearity
Article . 2012 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2010
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Positive solutions for thep-Laplacian with dependence on the gradient

Authors: W M Ferreira; Grey Ercole; Hamilton Bueno; Antônio Zumpano;

Positive solutions for thep-Laplacian with dependence on the gradient

Abstract

We prove a result of existence of positive solutions of the Dirichlet problem for $-��_p u=\mathrm{w}(x)f(u,\nabla u)$ in a bounded domain $��\subset\mathbb{R}^N$, where $��_p$ is the $p$-Laplacian and $\mathrm{w}$ is a weight function. As in previous results by the authors, and in contrast with the hypotheses usually made, no asymptotic behavior is assumed on $f$, but simple geometric assumptions on a neighborhood of the first eigenvalue of the $p$-Laplacian operator. We start by solving the problem in a radial domain by applying the Schauder Fixed Point Theorem and this result is used to construct an ordered pair of sub- and super-solution, also valid for nonlinearities which are super-linear both at the origin and at $+\infty$. We apply our method to the Dirichlet problem $-��_pu = ��u(x)^{q-1}(1+|\nabla u(x)|^p)$ in $��$ and give examples of super-linear nonlinearities which are also handled by our method.

Keywords

Mathematics - Analysis of PDEs, FOS: Mathematics, Analysis of PDEs (math.AP)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average
Green
bronze