<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The long-standing problem of finding coherent states for the (bound state portion of the) hydrogen atom is positively resolved. The states in question: (i) are normalized and are parameterized continuously, (ii) admit a resolution of unity with a positive measure, and (iii) enjoy the property that the temporal evolution of any coherent state by the hydrogen atom Hamiltonian remains a coherent state for all time.
8 pages, TeX, no figures
Quantum Physics, hydrogen atom, Applications of operator theory in the physical sciences, FOS: Physical sciences, Coherent states, coherent states, Quantum Physics (quant-ph)
Quantum Physics, hydrogen atom, Applications of operator theory in the physical sciences, FOS: Physical sciences, Coherent states, coherent states, Quantum Physics (quant-ph)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 135 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |