
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the interest of biologists to the kinetic and mechanical properties of cell membrane receptors. The aim of this review is to give a description of these advances that benefitted from a largely multidisciplinar approach.
[PHYS.PHYS.PHYS-BIO-PH] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph], Biological Physics (physics.bio-ph), [SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics, FOS: Physical sciences, Physics - Biological Physics
[PHYS.PHYS.PHYS-BIO-PH] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph], Biological Physics (physics.bio-ph), [SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics, FOS: Physical sciences, Physics - Biological Physics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 179 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
