
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>handle: 10203/2153
A two-dimensional transient model is introduced to describe the heat transfer and fluid flow in pulsed gas tungsten arc (GTA) welding. The current continuity equation has been solved with the combined arc plasma - cathode system, independent of the assumption of the current density distribution on the cathode surface which was essential in previous studies of the arc plasma. The temperature distribution in pulsed GTA welding has been described, and the transition processes of temperature contours and current densities at the anode centre have been studied. Moreover, the effects of pulsed welding parameters on the dynamic process of current density at the anode centre are studied using the developed model. The results have been compared with experimental data measured by the probe method.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
