Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The American Natural...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The American Naturalist
Article . 2010 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.5167/uzh...
Other literature type . 2010
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pollination Efficiency and the Evolution of Specialized Deceptive Pollination Systems

Authors: Scopece, Giovanni; Cozzolino, Salvatore; Johnson, Steven D; Schiestl, Florian P;

Pollination Efficiency and the Evolution of Specialized Deceptive Pollination Systems

Abstract

The ultimate causes of evolution of highly specialized pollination systems are little understood. We investigated the relationship between specialization and pollination efficiency, defined as the proportion of pollinated flowers relative to those that experienced pollen removal, using orchids with different pollination strategies as a model system. Rewarding orchids showed the highest pollination efficiency. Sexually deceptive orchids had comparably high pollination efficiency, but food-deceptive orchids had significantly lower efficiency. Values for pollinator sharing (a measure of the degree of generalization in pollination systems) showed the reverse pattern, in that groups with high pollination efficiency had low values of pollinator sharing. Low pollinator sharing may thus be the basis for efficient pollination. Population genetic data indicated that both food- and sexually deceptive species have higher degrees of among-population gene flow than do rewarding orchids. Thus, the shift from food to sexual deception may be driven by selection for more efficient pollination, without compromising the high levels of gene flow that are characteristic of deceptive species.

Keywords

Male, 10121 Department of Systematic and Evolutionary Botany, 1105 Ecology, Evolution, Behavior and Systematics, Insecta, Reproduction, Animals, 580 Plants (Botany), Orchidaceae, Pollination, Biological Evolution

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
98
Top 1%
Top 10%
Top 10%
Green
bronze