Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2008 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2008
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chemical Abundances in Symbiotic Stars

Authors: Chunhua Zhu; Chunhua Zhu; Zhaojun Wang; Zhaojun Wang; Zhanwen Han; Guoliang Lü;

Chemical Abundances in Symbiotic Stars

Abstract

We have carried out a study of the chemical abundances of $^1$H, $^4$He, $^{12}$C, $^{13}$C, $^{14}$N, $^{15}$N, $^{16}$O, $^{17}$O, $^{20}$Ne and $^{22}$Ne in symbiotic stars (SSs) by means of a population synthesis code. We find that the ratios of the number of O-rich SSs to that of C-rich SSs in our simulations are between 3.4 and 24.1, depending on the third dredge-up efficiency $��$ and the terminal velocity of the stellar wind $v(\infty)$. The fraction of SSs with $extrinsic$ C-rich cool giants in C-rich cool giants ranges from 2.1% to 22.7%, depending on $��$, the common envelope algorithm and the mass-loss rate. Compared with the observations, the distributions of the relative abundances of $^{12}$C/$^{13}$C vs. [C/H] of the cool giants in SSs suggest that the thermohaline mixing in low-mass stars may exist. The distributions of the relative abundances of C/N vs. O/N, Ne/O vs. N/O and He/H vs. N/O in the symbiotic nebulae indicate that it is quite common that the nebular chemical abundances in SSs are modified by the ejected materials from the hot components. Helium overabundance in some symbiotic nebulae may be relevant to a helium layer on the surfaces of white dwarf accretors.

28 pages, 6 figure, accepted for publication in ApJ

Related Organizations
Keywords

Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Top 10%
Top 10%
Green
gold