Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2001 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

Spectroscopic Diagnostics of Nanoflare‐heated Loops

Authors: J. A. Klimchuk; P. J. Cargill;

Spectroscopic Diagnostics of Nanoflare‐heated Loops

Abstract

To evaluate the usefulness of spectroscopic techniques for diagnosing realistic solar plasmas and to better understand the physical origin of coronal heating, we have simulated observations of model coronal loops that are heated randomly and impulsively by nanoflares. We find that the emission measures, densities, and filling factors that are inferred from spectral line intensities (EMs, ns, and s, respectively) are generally an excellent representation of the properties of the nanoflare-heated plasma. To better than 25% in most cases, EMs indicates the amount of material present in the ? log T = 0.3 temperature interval centered on the peak of the line contribution function, ns indicates the average density of this material, and s indicates the fraction of the total volume that the material occupies. Measurements with lithium-like lines are much less accurate, however. We provide diagnostic values and line intensities for many different spectral lines that can be compared directly with observations from the Coronal Diagnostic Spectrometer and Solar Ultraviolet Measurements of Emitted Radiation instruments on SOHO and from the future Extreme Ultraviolet Imaging Spectrometer instrument on Solar-B. Such comparisons will provide the first ever rigorous test of the nanoflare concept, which has enormous implications for understanding the mechanism of coronal heating.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 10%
Top 10%
Top 10%
gold