Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 1998 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 1997
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

The Central Engine of Gamma-Ray Bursters

Authors: Kluzniak, W.; Ruderman, M.;

The Central Engine of Gamma-Ray Bursters

Abstract

GRBs are thought to arise in relativistic blast-wave shocks at distances of 10 to 1000 AU from the point where the explosive energy is initially released. To account for the observed duration and variability of the gamma-ray emission in most GRBs, a central engine powering the shocks must remain active for several seconds to many minutes but must strongly fluctuate in its output on much shorter timescales. We show how a neutron star differentially rotating at millisecond periods (DROMP) could be such an engine. A magnetized DROMP would repeatedly wind up toroidal magnetic fields to about 10**17 G and only release the corresponding magnetic energy, when each buoyant magnetic field torus floats up to, and breaks through, the stellar surface. The resulting rapid sub-bursts, separated by relatively quiescent phases, repeat until the kinetic energy of differential rotation is exhausted by these events. Calculated values of the energy released and of the various timescales are in agreement with observations of GRBs. The baryon loading in each sub-burst may also be consistent with theoretical requirements for a blast wave capable of giving the X-ray, optical and radio afterglows recently observed from cosmological distances. DROMPs could be created in several kinds of astrophysical events; some of these would be expected to occur at about the observed GRB rate. The requisite differential rotation could be imparted to neutron stars as they are born or at the end of their existence: some DROMPs may be created close to star forming regions while others may arise far from galaxies.

6 pages, 1 figure

Keywords

Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    196
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
196
Top 10%
Top 1%
Top 10%
Green
bronze