Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications of the ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Origins of Hot Subdwarf Stars

Authors: Rex A. Saffer;

The Origins of Hot Subdwarf Stars

Abstract

High signal-to-noise optical spectrophotometry of a sample of filed subluminous B stars drawn largely from the Palomar Green ultraviolet-excess survey is analyzed with a new grid of model atmospheres and synthetic spectra. The stellar effective temperatures, surface gravities, and photospheric helium abundances are determined simultaneously from a dtailed analysis of hydrogen and helium absorption-line profiles. The derived temperatures and gravities place the subluminous B stars in the theoretical H-R diagram along and bounded below by theoretical sequences of the zero-age extended horizontal branch, lending strong support to the hypothesis that these stars are compsed of helium-burning cores of 0.5 solar mass overlain by very thin layers of hydrogen (< 0.02 solar mass). Various scenarios for their past evolutionary history are exmined in the context of their probable future evolution into white dwarfs of lower-than-average mass. The derived distances above the Galactic plane support a scale height for the population of 285 pc, consistent with the identification of their progenitor stars as members of the old disk population. Radial velocities of sdB and sdO stars are analyzed to infer their kinematic characteristics. The results for the sdB stars are inconclusive, but for the sdO stars the results are also consistent with the population belonging to the older part of the thin disk.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
bronze