
Spiral arms, if they are massive, exert gravitational torques that transport angular momentum radially within galactic disks. These torques depend not on the pattern speed or permanence of the arms but only on the nonaxisymmetric mass distribution. Hence the torques can be measured from photometry. We demonstrate this using $gri$ CCD data for M100 (NGC 4321). Since we find consistency among the three bands, we believe that dust and young stars in the arms do not seriously bias our results. If the present epoch is representative, the timescale for redistribution of angular momentum in M100 is $5-10$ Gyr, the main uncertainty being the mass-to-light ratio of the disk.
Uuencoded compressed PostScript (300k) - 26 pages, figs. 3-9; submitted to AJ. Full PostScript version (with all figures) is available through anonymous ftp at ftp://astro.princeton.edu/ognedin/Torque/paper.ps or ftp://astro.princeton.edu/library/preprints/pop613.ps.Z or through WWW http://www.astro.princeton.edu/~library/prep.html
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
