Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Gener...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of General Physiology
Article . 1940 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CRYSTALLINE RIBONUCLEASE

Authors: M, Kunitz;

CRYSTALLINE RIBONUCLEASE

Abstract

1. A crystalline enzyme capable of digesting yeast nucleic acid has been isolated from fresh beef pancreas. 2. The enzyme called "ribonuclease" is a soluble protein of albumin type. Its molecular weight is about 15,000. Its isoelectric point is in the region of pH 8.0. 3. Ribonuclease splits yeast nucleic acid into fragments small enough to diffuse readily through collodion or cellophane membranes. 4. The split products of digestion, unlike the undigested yeast nucleic acid, are not precipitable with glacial acetic acid or dilute hydrochloric acid. 5. The digestion of yeast nucleic acid is accompanied by a gradual formation of free acid groups without any significant liberation of free phosphoric acid. 6. Ribonuclease is stable over a wide range of pH even when heated for a short time at 100°C. Its maximum stability is in the range of pH 2.0 to 4.5. 7. Denaturation of the protein of ribonuclease by heat or alkali, or digestion of the protein by pepsin, causes a corresponding percentage loss in the enzymatic activity of the material.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    341
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.01%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
341
Top 10%
Top 0.01%
Top 10%
Published in a Diamond OA journal
Related to Research communities