Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Physiological Roles of Xanthine Oxidoreductase

Authors: Roger Harrison;

Physiological Roles of Xanthine Oxidoreductase

Abstract

Xanthine oxidoreductase (XOR) is a major protein component of the milk fat globule membrane (MFGM) surrounding fat droplets in milk and its enzymology is well characterised. The enzyme is widely distributed in mammalian tissues and is generally accepted to be a key enzyme of purine catabolism. It catalyses the oxidation of a wide range of substrates and can pass electrons to molecular oxygen, generating reactive oxygen species (ROS); similar reduction of nitrite yields reactive nitrogen species (RNS). While XOR has been implicated in ischemia-reperfusion injury, its involvement in normal physiological processes has been less studied. It is argued here that XOR-derived ROS and RNS play a role in innate immunity, specifically in the inflammatory response and in anti-microbial defense of the gastrointestinal tract. XOR-derived species could also be involved in signalling. Additionally, XOR is likely to play a part in metabolism of xenobiotics and has recently been shown to mediate the secretion of milk fat globules. The human enzyme has only relatively recently been characterized. The enzyme purified from breast milk shows very low enzymatic activity, and it is suggested that human XOR has evolved so as to be regulated by an exceptional range of pre- and posttranslational mechanisms.

Related Organizations
Keywords

Mice, Xanthine Oxidase, Milk, Animals, Humans, Cattle, Reactive Oxygen Species, Immunity, Innate, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    172
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
172
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?