
Abstract First, we give a necessary and sufficient condition for torsion-free finite rank subgroups of arbitrary abelian groups to be purifiable. An abelian group G is said to be a strongly ADE decomposable group if there exists a purifiable T(G)-high subgroup of G. We use a previous result to characterize ADE decomposable groups of finite torsion-free rank. Finally, in an extreme case of strongly ADE decomposable groups, we give a necessary and sufficient condition for abelian groups of finite torsion-free rank to be splitting.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
