
handle: 11390/883474
We devise methods for finding approximations of the generalized inverse of the graph Laplacian matrix, which arises in many graph-theoretic applications. Finding this matrix in its entirety involves solving a matrix inversion problem, which is resource-demanding in terms of consumed time and memory and hence impractical whenever the graph is relatively large. Our approximations use only a few eigenpairs of the Laplacian matrix and are parametric with respect to this number, so that the user can compromise between effectiveness and efficiency of the approximate solution. We apply the devised approximations to the problem of computing current-flow betweenness centrality on a graph. However, given the generality of the Laplacian matrix, many other applications can be sought. We experimentally demonstrate that the approximations are effective already with a constant number of eigenpairs. These few eigenpairs can be stored with a linear amount of memory in the number of nodes of the graph, and in the realistic...
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
