
In this paper, a discrete predator-prey model incorporating herd behaviour and square root response function is deduced from its continuous version by the semi-discretization method. Firstly, the existence and local stability of fixed points of the system are studied by applying a key lemma. Secondly, by employing the centre manifold theorem and bifurcation theory, the conditions for the occurrences of the transcritical bifurcation and Neimark-Sacker bifurcation are obtained. Not only that but the direction and stability conditions of the bifurcated closed orbits are also clearly shown. Finally, numerical simulations are also given to confirm the existence of Neimark-Sacker bifurcation.
T57-57.97, Applied mathematics. Quantitative methods, Neimark-Sacker bifurcation, QA1-939, square root functional response, semi-discretization method, transcritical bifurcation, Predator-prey system with herd behaviour, Mathematics
T57-57.97, Applied mathematics. Quantitative methods, Neimark-Sacker bifurcation, QA1-939, square root functional response, semi-discretization method, transcritical bifurcation, Predator-prey system with herd behaviour, Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
