Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Combustion Theory and Modelling
Article . 2016 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Entropy production and timescales

Authors: Valorani, Mauro; Paolucci, Samuel; Ciottoli, Pietro Paolo; Malpica Galassi, Riccardo;

Entropy production and timescales

Abstract

Spatially homogeneous reactive systems are characterised by the simultaneous presence of a wide range of timescales. When the dynamics of such reactive systems develop very slow and very fast timescales separated by a range of active timescales, with large gaps in the fast/active and slow/active timescales, then it is possible to attain a multi-scale adaptive model reduction along with the integration of the governing ordinary differential equations using the G-Scheme framework. The G-Scheme assumes that the dynamics is decomposed into active, slow, fast, and when applicable, invariant subspaces. We derive expressions that reveal the direct link between timescales and entropy production by resorting to the estimates of the contributions of the fast and slow subspaces provided by the G-Scheme. With reference to a constant pressure adiabatic batch reactor, we compute the contribution to entropy production by the four subspaces. These numerical experiments show that, as indicated by the theoretical derivatio...

Countries
Saudi Arabia, Italy
Keywords

entropy production; G-Scheme; timescale analysis; chemistry (all); chemical engineering (all); modeling and simulation; fuel technology; energy engineering and eower technology; physics and astronomy (all)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?