Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Systematic Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Systematic Biology
Article
Data sources: UnpayWall
Systematic Biology
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Promise of DNA Barcoding for Taxonomy

Authors: T. Ryan Gregory; Paul D. N. Hebert;

The Promise of DNA Barcoding for Taxonomy

Abstract

DNA barcoding is a novel system designed to provide rapid, accurate, and automatable species identifications by using short, standardized gene regions as internal species tags. As a consequence, it will make the Linnaean taxonomic system more accessible, with benefits to ecologists, conservationists, and the diversity of agencies charged with the control of pests, invasive species, and food safety. More broadly, DNA barcoding allows a day to be envisioned when every curious mind, from professional biologists to schoolchildren, will have easy access to the names and biological attributes of any species on the planet. In addition to assigning specimens to known species, DNA barcoding will accelerate the pace of species discovery by allowing taxonomists to rapidly sort specimens and by highlighting divergent taxa that may represent new species. By augmenting their capabilities in these ways, DNA barcoding offers taxonomists the opportunity to greatly expand, and eventually complete, a global inventory of life’s diversity. Despite the potential benefits of DNA barcoding to both the practitioners and users of taxonomy, it has been controversial in some scientific circles (Wheeler, 2004; Will and Rubinoff, 2004; Ebach and Holdredge, 2005; Will et al., 2005). A few have even characterized DNA barcoding as being “anti-taxonomy,” arguing that its implementation will signal the death of a system 250 years in the making. We feel that this opposition stems from misconceptions about the DNA barcoding effort. As such, we welcome this opportunity to clarify both the rationale and potential impacts of DNA barcoding. In responding to this set of questions, we emphasize the multiple positive impacts of this approach for taxonomy and biodiversity science.

Keywords

Species Specificity, Databases, Genetic, Sequence Analysis, DNA, Classification

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1K
Top 0.1%
Top 0.1%
Top 1%
bronze
Related to Research communities
Italian National Biodiversity Future Center