Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Experimental Mathema...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Experimental Mathematics
Article . 2017 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computing Kazhdan Constants by Semidefinite Programming

Authors: Fujiwara, Koji; Kabaya, Yuichi;

Computing Kazhdan Constants by Semidefinite Programming

Abstract

Kazhdan constants of discrete groups are hard to compute and the actual constants are known only for several classes of groups. By solving a semidefinite programming problem by a computer, we obtain a lower bound of the Kazhdan constant of a discrete group. Positive lower bounds imply that the group has property (T). We study lattices on $\tilde{A}_2$-buildings in detail. For $\tilde{A}_2$-groups, our numerical bounds look identical to the known actual constants. That suggests that our approach is effective. For a family of groups, $G_1, \cdots, G_4$, that are studied by Ronan, Tits and others, we conjecture the spectral gap of the Laplacian is $(\sqrt 2-1)^2$ based on our experimental results. For $\mathrm{SL}(3,\Bbb Z)$ and $\mathrm{SL}(4,\Bbb Z)$ we obtain lower bounds of the Kazhdan constants, 0.2155 and 0.3285, respectively, which are better than any other known bounds. We also obtain 0.1710 as a lower bound of the Kazhdan constant of the Steinberg group $\mathrm{St}_3(\Bbb Z)$.

22 pages. v2: minor changes, made data and program files accessible

Related Organizations
Keywords

Mathematics - Operator Algebras, FOS: Mathematics, Group Theory (math.GR), Operator Algebras (math.OA), Mathematics - Group Theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
bronze