
A framework for understanding the tectonothermal evolution of solid planetary bodies has historically been lacking owing to sparse observational constraints. Developments in simulating the physical interiors and tectonic behaviour of terrestrial planets have allowed insights into the relevant physics and important factors governing planetary behaviour. This contribution summarises the critical factors in determining a planet's tectonic regime, and the application of this framework to understanding terrestrial planet evolution. Advances in modelling have led to the identification of new, unmapped tectonic regimes, such as episodic convection, which has relevance to our understanding of the evolution of the early Earth, Venus and Saturn's moon Enceladus. Coupling of tectonic and atmospheric models for planetary evolution has contributed to our knowledge of Martian and Venusian degassing histories, and recent debate on the tectonic regime of exosolar planets informs outstanding questions on their habitabilit...
mantle convection, planets, 550, tectonics, 500, geodynamics
mantle convection, planets, 550, tectonics, 500, geodynamics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
