
The rank of a ring $R$ is the supremum of minimal cardinalities of generating sets of $I$ as $I$ ranges over ideals of $R$. Matson showed that every positive integer occurs as the rank of some ring $R$. Motivated by the result of Cohen and Gilmer that a ring of finite rank has Krull dimension $0$ or $1$, we give four different constructions of rings of rank $n$ (for all positive integers n). Two constructions use one-dimensional domains, and the former of these directly generalizes Matson's construction. Our third construction uses Artinian rings (dimension zero), and our last construction uses polynomial rings over local Artinian rings (dimension one, irreducible, not a domain).
8 pages
FOS: Mathematics, Mathematics - Commutative Algebra, Commutative Algebra (math.AC)
FOS: Mathematics, Mathematics - Commutative Algebra, Commutative Algebra (math.AC)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
