
Let G be a group and Autc(G) be the group of all central automorphisms of G. We know that in a finite p-group G, Autc(G) = Inn(G) if and only if Z(G) = G′ and Z(G) is cyclic. But we shown that we cannot extend this result for infinite groups. In fact, there exist finitely generated nilpotent groups of class 2 in which G′ =Z(G) is infinite cyclic and Inn(G) < C* = Autc(G). In this article, we characterize all finitely generated groups G for which the equality Autc(G) = Inn(G) holds.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
