Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Technometricsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Technometrics
Article
Data sources: UnpayWall
Technometrics
Article . 2013 . Peer-reviewed
Data sources: Crossref
UNC Dataverse
Article . 2013
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Robust Analysis of High Throughput Screening (HTS) Assay Data

Authors: Changwon Lim; Pranab Kumar Sen; Shyamal Das Peddada;

Robust Analysis of High Throughput Screening (HTS) Assay Data

Abstract

Quantitative high throughput screening (qHTS) assays use cells or tissues to screen thousands of compounds in a short period of time. Data generated from qHTS assays are then evaluated using nonlinear regression models, such as the Hill model, and decisions regarding toxicity are made using the estimates of the parameters of the model. For any given compound, the variability in the observed response may either be constant across dose groups (homoscedasticity) or vary with dose (heteroscedasticity). Since thousands of compounds are simultaneously evaluated in a qHTS assay, it is not practically feasible for an investigator to perform residual analysis to determine the variance structure before performing statistical inferences on each compound. Since it is well-known that the variance structure plays an important role in the analysis of linear and nonlinear regression models it is therefore important to have practically useful and easy to interpret methodology which is robust to the variance structure. Furthermore, given the number of chemicals that are investigated in the qHTS assay, outliers and influential observations are not uncommon. In this article we describe preliminary test estimation (PTE) based methodology which is robust to the variance structure as well as any potential outliers and influential observations. Performance of the proposed methodology is evaluated in terms of false discovery rate (FDR) and power using a simulation study mimicking a real qHTS data. Of the two methods currently in use, our simulations studies suggest that one is extremely conservative with very small power in comparison to the proposed PTE based method whereas the other method is very liberal. In contrast, the proposed PTE based methodology achieves a better control of FDR while maintaining good power. The proposed methodology is illustrated using a data set obtained from the National Toxicology Program (NTP). Additional information, simulation results, data and computer code are available online as supplementary materials.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities