
We introduce the optimal control problem associated with ultradiffusion processes as a stochastic differential equation constrained optimization of the expected system performance over the set of feasible trajectories. The associated Bellman function is characterized as the solution to a Hamilton–Jacobi equation evaluated along an optimal process. For an important class of ultradiffusion processes, we define the value function in terms of the time and the natural state variables. Approximation solvability is shown and an application to mathematical finance demonstrates the applicability of the paradigm. In particular, we utilize a method-of-lines finite element method to approximate the value function of a European style call option in a market subject to asset liquidity risk (including limit orders) and brokerage fees.
Limit orders, Transaction costs, Finance and Financial Management, Applied Mathematics, Asset liquidity, Ultradiffusion process, Optimal control
Limit orders, Transaction costs, Finance and Financial Management, Applied Mathematics, Asset liquidity, Ultradiffusion process, Optimal control
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
