Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ British Journal Of N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
British Journal Of Nutrition
Article . 2002 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Determinants of fat mass in prepubertal children

Authors: A. Bosy-Westphal; A. Grund; M. Siewers; H. Krause; H. Rieckert; M J Müller;

Determinants of fat mass in prepubertal children

Abstract

The aim of the present study was to compare variables of metabolism, physical activity and fitness to body composition in normal and overweight children in a cross-sectional study design. Body composition was assessed by anthropometric measurements and bioelectrical impedance analysis in forty-eight prepubertal children (age 5–11 years, thirteen normal-weight, thirty-five overweight). Total energy expenditure (EE) was measured by combination of indirect calorimetry (for measurement of resting EE) and individually calibrated 24 h heart-rate (HR) monitoring. Activity-related EE and physical activity level (PAL) were calculated. Time spent with min-by-min HR>FLEX HR was also used as a marker of moderate habitual and vigorous activities. Aerobic fitness (O2pulse (O2consumption:HR at submaximal steady-state heart rate), submaximal O2consumption (VO2submaximal), RER at a HR of 170 beats per min) was determined by bicycle ergometry. Muscle strength of the legs (maximal isometric strength ofmusculus quadricepsand ofmusculus ischiocruralis(Fa max and Fb max respectively)) was measured by computer tensiometry. When compared with normal children, overweight children had higher skinfold thicknesses (sum of skinfold thicknesses at four sites +160%), fat mass (+142%), waist (+24%) and hip circumferences (+14%), resting EE (+13%) and RER (+5%). No significant group differences were found for fat-free mass, muscle mass, total EE, activity-related EE, PAL, HR>FLEX HR, VO2submaximal, O2pulse, Fa max and Fb max as well as the fat-free mass- or muscle mass-adjusted values for resting EE, aerobic fitness and muscle strength. When compared with normal children, overweight children had a lower measuredv.estimated resting EE (Δ resting EE) and spent more time watching television. There were positive relationships between fat-free mass(x)and resting EE(x), total EE(y), aerobic fitness(y)and muscle strength(y), but only Δ resting EE(x)and HR>FLEX HR(x)correlated with fat mass(y). In a stepwise multivariate regression analysis resting EE adjusted for fat-free mass and Δ resting EE were significant determinants of % fat mass and explained 29·7% of its variance. Thus, in the present cross-sectional study, resting EE was the most important determinant of fat mass.

Related Organizations
Keywords

Male, Analysis of Variance, Cross-Sectional Studies, Heart Rate, Spirometry, Case-Control Studies, Child, Preschool, Body Composition, Humans, Regression Analysis, Female, Obesity, Child, Energy Metabolism, Muscle, Skeletal, Exercise

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Average
bronze