
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 18854320
The induction of neurite retraction and growth cone collapse via G-protein-coupled receptors is involved in developmental as well as regenerative processes. The role of individual G-protein-mediated signaling processes in the regulation of neurite morphology is still incompletely understood. Using primary neurons from brains lacking Galpha(q)/Galpha(11) or Galpha(12)/Galpha(13), we show here that G(12)/G(13)-mediated signaling is absolutely required for neurite retraction and growth cone collapse induced by the blood-borne factors lysophosphatidic acid and thrombin. Interestingly, the effects of lysophosphatidic acid were mediated mainly by G(13), whereas thrombin effects required G(12). Surprisingly, lack of Galpha(q)/Galpha(11) resulted in overshooting responses to both stimuli, indicating that G(q)/G(11)-mediated signaling most likely via activation of Rac antagonizes the effects of G(12)/G(13).
Mice, Knockout, Mice, Growth Cones, Neurites, Animals, GTP-Binding Protein alpha Subunits, Gq-G11, GTP-Binding Protein alpha Subunits, G12-G13, Cells, Cultured, Signal Transduction, rac GTP-Binding Proteins
Mice, Knockout, Mice, Growth Cones, Neurites, Animals, GTP-Binding Protein alpha Subunits, Gq-G11, GTP-Binding Protein alpha Subunits, G12-G13, Cells, Cultured, Signal Transduction, rac GTP-Binding Proteins
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
