Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Polynucleotide 3′-terminal Phosphate Modifications by RNA and DNA Ligases

Authors: Alexander M, Zhelkovsky; Larry A, McReynolds;

Polynucleotide 3′-terminal Phosphate Modifications by RNA and DNA Ligases

Abstract

RNA and DNA ligases catalyze the formation of a phosphodiester bond between the 5'-phosphate and 3'-hydroxyl ends of nucleic acids. In this work, we describe the ability of the thermophilic RNA ligase MthRnl from Methanobacterium thermoautotrophicum to recognize and modify the 3'-terminal phosphate of RNA and single-stranded DNA (ssDNA). This ligase can use an RNA 3'p substrate to generate an RNA 2',3'-cyclic phosphate or convert DNA3'p to ssDNA(3')pp(5')A. An RNA ligase from the Thermus scotoductus bacteriophage TS2126 and a predicted T4 Rnl1-like protein from Thermovibrio ammonificans, TVa, were also able to adenylate ssDNA 3'p. These modifications of RNA and DNA 3'-phosphates are similar to the activities of RtcA, an RNA 3'-phosphate cyclase. The initial step involves adenylation of the enzyme by ATP, which is then transferred to either RNA 3'p or DNA 3'p to generate the adenylated intermediate. For RNA (3')pp(5')A, the third step involves attack of the adjacent 2' hydroxyl to generate the RNA 2',3'-cyclic phosphate. These steps are analogous to those in classical 5' phosphate ligation. MthRnl and TS2126 RNA ligases were not able to modify a 3'p in nicked double-stranded DNA. However, T4 DNA ligase and RtcA can use 3'-phosphorylated nicks in double-stranded DNA to produce a 3'-adenylated product. These 3'-terminal phosphate-adenylated intermediates are substrates for deadenylation by yeast 5'Deadenylase. Our findings that classic ligases can duplicate the adenylation and phosphate cyclization activity of RtcA suggests that they have an essential role in metabolism of nucleic acids with 3'-terminal phosphates.

Related Organizations
Keywords

DNA Ligases, Methanobacterium, RNA Ligase (ATP), DNA, DNA Ligase ATP, Viral Proteins, Bacterial Proteins, RNA, Bacteriophages, Thermus

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
gold