Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1995 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vascular Endothelial Growth Factor Increases Urokinase Receptor Expression in Vascular Endothelial Cells

Authors: Mandriota, Stephano J.; Seghezzi, Graziano; Vassalli, Jean-Dominique; Ferrara, Napoleone; Wasi, Safia; Mazzieri, Roberta; Mignatti, Paolo; +1 Authors

Vascular Endothelial Growth Factor Increases Urokinase Receptor Expression in Vascular Endothelial Cells

Abstract

Vascular endothelial growth factor (VEGF) is a potent angiogenic factor and endothelial cell-specific mitogen that stimulates urokinase-type plasminogen activator (uPA) activity in vascular endothelial cells. Here, we report that VEGF increases the high affinity binding of uPA to the same cells and that this binding is prevented by a peptide corresponding to the uPA receptor (uPAR) binding growth factor-like domain of uPA. Ligand cross-linking, ligand blotting, and uPA-Sepharose affinity chromatography revealed an increase in a cell surface uPA binding protein that corresponds to the uPAR on the basis of its affinity for uPA, M(r) of 50,000-55,000, and phosphatidylinositol-specific phospholipase C sensitivity. By Scatchard analysis, VEGF increased the number of uPAR molecules by 2.8-3.5-fold and concomitantly decreased their affinity for uPA. By northern blotting uPAR mRNA was increased in a dose- and time-dependent manner in response to VEGF. Taken together, these findings demonstrate that VEGF-induced angiogenesis is accompanied by increased uPAR expression and uPA activity on the endothelial cell surface. These observations are consistent with the notion that the uPA-uPAR interaction facilitates cellular invasion.

Countries
Switzerland, Australia
Keywords

Vascular Endothelial Growth Factor A, Biochemistry & Molecular Biology, RNA, Messenger/genetics/metabolism, Receptors, Cell Surface, Endothelial Growth Factors, Phosphoric Diester Hydrolases/metabolism, Receptors, Urokinase Plasminogen Activator, Lymphatic System, Urokinase-Type Plasminogen Activator/metabolism, Phosphoinositide Phospholipase C, 616, Animals, Lymphatic System/cytology/metabolism, RNA, Messenger, Cells, Cultured, Endothelium, Vascular/cytology/ metabolism, Lymphokines, Phosphoric Diester Hydrolases, Vascular Endothelial Growth Factors, Phosphatidylinositol Diacylglycerol-Lyase, Receptors, Cell Surface/ biosynthesis/genetics, Urokinase-Type Plasminogen Activator, Enzyme Activation, Lymphokines/ physiology, Cattle, Endothelium, Vascular, Endothelial Growth Factors/ physiology, ddc: ddc:616

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    275
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
275
Top 10%
Top 1%
Top 1%
gold