
Significance The Solar System planets have near-circular orbits (i.e., unusually low eccentricity) compared with the known population of exoplanets, planets that orbit stars other than the Sun. This fact has been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We find a strong anticorrelation of orbital eccentricity with the number of planets (multiplicity) in a system that extrapolates nicely to the eight-planet, Solar System case despite the fact that no more than two Solar System planets would be detectable in the sample in which the anticorrelation was discovered. Habitability may be more common in systems with a larger number of planets, which have lower typical eccentricities.
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 62 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
