Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Australian Journal o...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

Interaction between phloem proteins and viral movement proteins

Authors: Dror Shalitin; Shmuel Wolf;

Interaction between phloem proteins and viral movement proteins

Abstract

This paper originates from a presentation at the International Conference on Assimilate Transport and Partitioning, Newcastle, NSW, August 1999 Recent studies support the concept that long-distance signals are involved in the regulation of resource allocation among the various plant organs. Following the finding that viral movement proteins (MPs) can exert an effect on sugar metabolism and resource allocation at sites distant from their expression, we suggested that the MPs interfere with an element(s) involved in the plant’s endogenous long-distance signal network. To provide experimental support for this hypothesis, several unique procedures were employed to identify interactions between viral MPs and phloem sap proteins (PSPs) collected from cut petioles of squash ( Cucurbita pepo L. subsp. pepo ) and melon ( Cucumis melo L.) plants. Far-western experiments with blotted PSPs, using both bacteria-overexpressed and in vitro -translated CMV- and TMV-MPs, revealed that the two virally encoded proteins react specifically with more than one PSP. Moreover, isolation of the naturally folded phloem protein in an affinity column containing a TMV-MP-maltose-binding protein indicated, once again, an interaction between the viral protein and similar PSPs. Two melon PSPs with molecular masses of 8 and 23 kDa were found to specifically interact with both the CMV- and TMV-MPs. The possible effects of this interaction in terms of altering the process of phloem transport and resource allocation are discussed.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!