Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Izvestiya Mathematics
Article . 1994 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

GENERALIZED MEROMORPHIC FUNCTIONS

Generalized meromorphic functions
Authors: Grigoryan, S. A.;

GENERALIZED MEROMORPHIC FUNCTIONS

Abstract

The autor continues his pioneering work on generalized meromorphic functions on the big plane generated by a compact Abelian group \(G\) with ordered dual group \(\Gamma\subset\mathbb{R}\). Here he presents the proofs of several of his previously announced results. Let \(G\) be a compact Abelian group with ordered dual group \(\Gamma\subset \mathbb{R}\). The big plane over \(G\) is the infinite cone \(\mathbb{C}_ \Gamma= [0,\infty)\cdot G\), the unit big disc \(\Omega\) over \(G\) is the set of points \({\mathbf w}= rg\) in the big plane whose ``modulus'' \(|{\mathbf w}|= r\) is \(\leq 1\), and \(\Omega^ 0\) is its interior. A continuous function \(f\) in a domain \(D\subset \mathbb{C}_ \Gamma\) is ``analytic'' (generalized analytic) in \(D\) if \(f\) can be approximated locally by linear combinations \(\sum c(a)\backslash f(a)\) over \(\mathbb{C}\) of functions \(f^ a(rg)= r^ a g(a)\), where \(r\geq 0,\), \(g\in G\) and \(a\in \Gamma_ +=\Gamma\cap [0,\infty)\) in \(\mathbb{C}_ \Gamma\). For \(D=\Omega\) the analyticity in this context was introduced by R. Arens and I. Singer in 1956; for an arbitrary \(D\) the notion is due to \textit{D. Stankov} and the reviewer [e.g., Big planes, boundaries and function algebras (1992; Zbl 0755.46020)]. We mention only a few of the many results in this paper. It is given a description of the measures on \(G\) that are orthogonal to the disc algebra of continuous up to the boundary \(G\) generalized analytic functions on \(\Omega\). The proof of author's result for unique generalized analytic extension on a domain \(D\subset\Omega^ 0\) of a bounded generalized analytic function defined on the complement in \(D\) of a certain thin set in \(\mathbb{C}_ \Gamma\) is presented as well. For a class of suitably defined meromorphic functions in \(\mathbb{C}_ \Gamma\) the following factorization result is proved. Theorem. Let \(f\) be a meromorphic function in \(\Omega^ 0\) and let \(S^*\in \Omega^ 0\) is either a removable singularity or an isolated pole. Then there is a non-vanishing generalized analytic function \(g\) on \(\Omega^ 0\), such that \(f\cdot g\) can be extended to a generalized analytic function on \(\Omega^ 0\). Versions of this result are given for the case of meromorphic functions on a ``big annulus'' region of type \(E^ 0=\{{\mathbf w}\in \mathbb{C}_ \Gamma< r|{\mathbf w}|< 1\}\) and for meromorphic almost periodic functions on the upper half plane or on a horizontal strip in \(\mathbb{C}\).

Keywords

Functions of hypercomplex variables and generalized variables, big plane, Meromorphic functions of one complex variable (general theory)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!