
We consider a dynamical system undergoing a saddle-node bifurcation with an explicitly time-dependent parameter p(t). The combined dynamics can be considered a dynamical system where p is a slowly evolving parameter. Here, we investigate settings where the parameter features an overshoot. It crosses the bifurcation threshold for some finite duration te and up to an amplitude R, before it returns to its initial value. We denote the overshoot as safe when the dynamical system returns to its initial state. Otherwise, one encounters runaway trajectories (tipping), and the overshoot is unsafe. For shallow overshoots (small R), safe and unsafe overshoots are discriminated by an inverse square-root border, te∝R−1/2, as reported in earlier literature. However, for larger overshoots, we here establish a crossover to another power law with an exponent that depends on the asymptotics of p(t). For overshoots with a finite support, we find that te∝R−1, and we provide examples for overshoots with exponents in the range [−1,−1/2]. All results are substantiated by numerical simulations, and it is discussed how the analytic and numeric results pave the way toward improved risk assessments separating safe from unsafe overshoots in climate, ecology, and nonlinear dynamics.
FOS: Physical sciences, Mathematical Physics (math-ph), Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics, 530, Mathematical Physics
FOS: Physical sciences, Mathematical Physics (math-ph), Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics, 530, Mathematical Physics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
