Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Constraining safe and unsafe overshoots in saddle-node bifurcations

Authors: Elias Enache; Oleksandr Kozak; Nico Wunderling; Jürgen Vollmer;

Constraining safe and unsafe overshoots in saddle-node bifurcations

Abstract

We consider a dynamical system undergoing a saddle-node bifurcation with an explicitly time-dependent parameter p(t). The combined dynamics can be considered a dynamical system where p is a slowly evolving parameter. Here, we investigate settings where the parameter features an overshoot. It crosses the bifurcation threshold for some finite duration te and up to an amplitude R, before it returns to its initial value. We denote the overshoot as safe when the dynamical system returns to its initial state. Otherwise, one encounters runaway trajectories (tipping), and the overshoot is unsafe. For shallow overshoots (small R), safe and unsafe overshoots are discriminated by an inverse square-root border, te∝R−1/2, as reported in earlier literature. However, for larger overshoots, we here establish a crossover to another power law with an exponent that depends on the asymptotics of p(t). For overshoots with a finite support, we find that te∝R−1, and we provide examples for overshoots with exponents in the range [−1,−1/2]. All results are substantiated by numerical simulations, and it is discussed how the analytic and numeric results pave the way toward improved risk assessments separating safe from unsafe overshoots in climate, ecology, and nonlinear dynamics.

Keywords

FOS: Physical sciences, Mathematical Physics (math-ph), Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics, 530, Mathematical Physics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green