Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2024
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Control of ecological networks: Abundance control or ecological regulation?

Control of ecological networks: abundance control or ecological regulation?
Authors: Xiaoting Liu; Maoxing Liu; Donghua Zhao; Rui Xiao; Yongzheng Sun;

Control of ecological networks: Abundance control or ecological regulation?

Abstract

Complex ecosystems often exhibit a tipping point around which a small perturbation can lead to the loss of the basic functionality of ecosystems. It is challenging to develop a control strategy to bring ecosystems to the desired stable states. Typically, two methods are employed to restore the functionality of ecosystems: abundance control and ecological regulation. Abundance control involves directly managing species abundance through methods such as trapping, shooting, or poisoning. On the other hand, ecological regulation is a strategy for ecosystems to self-regulate through environment improvement. To enhance the effectiveness of ecosystem recovery, we propose adaptive regulation by combining the two control strategies from mathematical and network science perspectives. Criteria for controlling ecosystems to reach equilibrium with or without noise perturbation are established. The time and energy costs of restoring an ecosystem to equilibrium often determine the choice of control strategy, thus, we estimate the control costs. Furthermore, we observe that the regulation parameter in adaptive regulation affects both time and energy costs, with a trade-off existing between them. By optimizing the regulation parameter based on a performance index with fixed weights for time and energy costs, we can minimize the total cost. Moreover, we discuss the impact of the complexity of ecological networks on control costs, where the more complex the networks, the higher the costs. We provide corresponding theoretical analyses for random networks, predator–prey networks, and mixture networks.

Related Organizations
Keywords

Dynamical systems and ergodic theory, Ordinary differential equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!