Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Energy harvesting from water impact using piezoelectric energy harvester

Authors: Shuangjian Wang; Lipeng He; Hongxin Wang; Xiaotao Li; Baoyu Sun; Jieqiong Lin;

Energy harvesting from water impact using piezoelectric energy harvester

Abstract

Energy, as an indispensable part of human life, has been a hot topic of research among scholars. The water kinetic energy generated by ocean currents, as a kind of clean energy, has high utilization rate, high power generation potential, and a broad prospect of powering microelectronic devices. As a result, the water kinetic piezoelectric energy harvester (WKPEH) has made significant progress in powering ocean sensors by harvesting ocean currents. This paper provides a comprehensive review of technologies that have been used in recent years to harvest energy from marine fluids using WKPEH. Detailed study of the energy harvesting mechanism of WKPEH. WKPEH can use the flutter-induced vibrations, vortex-induced vibrations, and wake oscillation principles to harvest water kinetic energy. The structural characteristics and output performance of each mechanism are also discussed and compared, and finally, a prospect on WKPEH is given.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!