
arXiv: 2111.09432
The first comprehensive study of electron gains and losses in hypersonic air flows including the full coupling between non-neutral plasma sheaths and quasi-neutral plasma flows is presented here. This is made possible by the use of advanced numerical methods that overcome the stiffness associated with plasma sheaths. The coupling between the sheaths, the electron temperature in non-equilibrium, and the ambipolar diffusion within quasi-neutral plasma flows is found to be critical to accurately predict electron losses and, thus, the plasma density around hypersonic vehicles. This is because electron cooling arising from the non-neutral sheaths significantly affects the electron temperature everywhere in the plasma and, therefore, the electron temperature-dependent loss processes of ambipolar diffusion and dissociative recombination. The results obtained show that electron loss to the surface due to catalyticity dominates over electron loss within the plasma due to dissociative recombination either (i) at high altitudes where the dynamic pressure is low, (ii) at low Mach number, or (iii) when the vehicle has a sharp leading edge.
Plasma Physics (physics.plasm-ph), Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, Physics - Fluid Dynamics, Physics - Plasma Physics
Plasma Physics (physics.plasm-ph), Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, Physics - Fluid Dynamics, Physics - Plasma Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
