
Neural Ordinary Differential Equations (ODEs) are a promising approach to learn dynamical models from time-series data in science and engineering applications. This work aims at learning neural ODEs for stiff systems, which are usually raised from chemical kinetic modeling in chemical and biological systems. We first show the challenges of learning neural ODEs in the classical stiff ODE systems of Robertson’s problem and propose techniques to mitigate the challenges associated with scale separations in stiff systems. We then present successful demonstrations in stiff systems of Robertson’s problem and an air pollution problem. The demonstrations show that the usage of deep networks with rectified activations, proper scaling of the network outputs as well as loss functions, and stabilized gradient calculations are the key techniques enabling the learning of stiff neural ODEs. The success of learning stiff neural ODEs opens up possibilities of using neural ODEs in applications with widely varying time-scales, such as chemical dynamics in energy conversion, environmental engineering, and life sciences.
FOS: Computer and information sciences, Computer Science - Machine Learning, Numerical Analysis (math.NA), Neural networks for/in biological studies, artificial life and related topics, Machine Learning (cs.LG), FOS: Mathematics, Time series analysis of dynamical systems, Mathematics - Numerical Analysis, Artificial neural networks and deep learning
FOS: Computer and information sciences, Computer Science - Machine Learning, Numerical Analysis (math.NA), Neural networks for/in biological studies, artificial life and related topics, Machine Learning (cs.LG), FOS: Mathematics, Time series analysis of dynamical systems, Mathematics - Numerical Analysis, Artificial neural networks and deep learning
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 118 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
