
doi: 10.1063/5.0038691
In this paper, we establish the Heisenberg’s uncertainty inequality associated with the Caputo derivative of order q ∈ (1, ∞) in the generalized Bargmann–Fock space. We also determine exactly when the equality occurs in the uncertainty inequality. It is done by estimating the growth of the eigenvalues of the commutator [Dq,zq]. We prove that the sequence of eigenvalues of [Dq,zq] tends to ∞ when the fractional order q belongs to (1, ∞). However, the sequence converges to zero when q belongs to (0, 1), which shows different behavior. Hence, only a weak uncertainty inequality is obtained for the latter case.
Bergman spaces and Fock spaces, Fractional derivatives and integrals, Uncertainty relations, also entropic, Commutation relations and statistics as related to quantum mechanics (general)
Bergman spaces and Fock spaces, Fractional derivatives and integrals, Uncertainty relations, also entropic, Commutation relations and statistics as related to quantum mechanics (general)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
