
doi: 10.1063/5.0031019
pmid: 33317298
The recently developed real-time nuclear–electronic orbital (RT-NEO) approach provides an elegant framework for treating electrons and selected nuclei, typically protons, quantum mechanically in nonequilibrium dynamical processes. However, the RT-NEO approach neglects the motion of the other nuclei, preventing a complete description of the coupled nuclear–electronic dynamics and spectroscopy. In this work, the dynamical interactions between the other nuclei and the electron–proton subsystem are described with the mixed quantum–classical Ehrenfest dynamics method. The NEO-Ehrenfest approach propagates the electrons and quantum protons in a time-dependent variational framework, while the remaining nuclei move classically on the corresponding average electron–proton vibronic surface. This approach includes the non-Born–Oppenheimer effects between the electrons and the quantum protons with RT-NEO and between the classical nuclei and the electron–proton subsystem with Ehrenfest dynamics. Spectral features for vibrational modes involving both quantum and classical nuclei are resolved from the time-dependent dipole moments. This work shows that the NEO-Ehrenfest method is a powerful tool to study dynamical processes with coupled electronic and nuclear degrees of freedom.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 47 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
