Powered by OpenAIRE graph
Found an issue? Give us feedback
Physics Todayarrow_drop_down
Physics Today
Article . 1989 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 1995 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cavity Quantum Electrodynamics

Authors: Serge Haroche; Daniel Kleppner;

Cavity Quantum Electrodynamics

Abstract

Ever since Einstein demonstrated that spontaneous emission must occur if matter and radiation are to achieve thermal equilibrium, physicists have generally believed that excited atoms inevitably radiate. Spontaneous emission is so fundamental that it is usually regarded as an inherent property of matter. This view, however, overlooks the fact that spontaneous emission is not a property of an isolated atom but of an atom-vacuum system. The most distinctive feature of such emission, irreversibility, comes about because an infinity of vacuum states is available to the radiated photon. If these states are modified—for instance, by placing the excited atom between mirrors or in a cavity—spontaneous emission can be greatly inhibited or enhanced.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    620
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
620
Top 0.1%
Top 0.1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!