
Morse theory is used to rigorously obtain counting formulas and lower bounds for the total number of images of a background point source, not on a caustic, undergoing lensing by a single-plane microlens system having compact bodies plus either subcritical or supercritical continuously distributed matter. An image-counting formula is also found for the case when external shear is added. In addition, it is proven that a microlens system consisting of k lens planes will generate N = 2M− + Πki=1(1 − gi) images of a background point source not on a caustic, where M− is the total number of critical points of odd index of the time-delay map and gi is the number of stars on the ith lens plane. Morse theoretic tools also yield that the smallest value N can have is Πi=1k(1+gi).
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
