Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Journal of Mathematical Physics
Article . 1986 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantum kinematics of the harmonic oscillator

Authors: KRAUSE, J;

Quantum kinematics of the harmonic oscillator

Abstract

The formalism of non-Abelian quantum kinematics is applied to the Newtonian symmetry group of the harmonic oscillator. Within the regular ray representation of the group, the Schrödinger operator, as well as two other (new) invariant operators, are obtained as Casimir operators of the extended kinematic algebra. Superselection rules are then introduced, which permit the identification (and the explicit calculation) of the physical states of the system. Next, a complementary ray representation, attached to the space-time realization of the group, casts the Schrödinger operator into the familiar time-dependent space-time differential operator of the harmonic oscillator and thus, by means of the superselection rules, one obtains the time-dependent Schrödinger equation of the sytem. Finally, the evaluation of a Hurwitz invariant integral, over the group manifold, affords the well known Feynman space-time propagator 〈t′,x′‖t,x〉 of the simple harmonic oscillator. Everything comes out from the assumed symmetries of the system. The whole approach is group theoretic and ‘‘relativistic.’’ No classical analog is used in this ‘‘quantization’’ scheme.

Keywords

kinematic algebra, Schrödinger operator, Regular ray representations, harmonic oscillator model, generating wave function, General quantum mechanics and problems of quantization, superselection rules, space- time kernel, non-Abelian quantum kinematics, quantum dynamics, complementary group ray representation, quantum theory of symmetries, Hamiltonian and Lagrangian mechanics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!