
For some metric spaces of self-adjoint operators, it is shown that the set of operators whose spectral measures have simultaneous zero upper-Hausdorff and one lower-packing dimension contains a dense Gδ subset. Applications include sets of limit-periodic operators.
Mathematics - Functional Analysis, Mathematics - Spectral Theory, FOS: Mathematics, FOS: Physical sciences, Mathematical Physics (math-ph), Spectral Theory (math.SP), Mathematical Physics, Functional Analysis (math.FA)
Mathematics - Functional Analysis, Mathematics - Spectral Theory, FOS: Mathematics, FOS: Physical sciences, Mathematical Physics (math-ph), Spectral Theory (math.SP), Mathematical Physics, Functional Analysis (math.FA)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
