Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AIP Advancesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIP Advances
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIP Advances
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIP Advances
Article . 2018
Data sources: DOAJ
https://dx.doi.org/10.60692/b2...
Other literature type . 2018
Data sources: Datacite
https://dx.doi.org/10.60692/d9...
Other literature type . 2018
Data sources: Datacite
versions View all 4 versions
addClaim

Domain rearrangement and denaturation in Ebola virus protein VP40

إعادة ترتيب المجال وتشويهه في بروتين فيروس الإيبولا VP40
Authors: Rudramani Pokhrel; Pornthep Sompornpisut; Prem P. Chapagain; Brian G. Olson; Bernard S. Gerstman; R. B. Pandey;

Domain rearrangement and denaturation in Ebola virus protein VP40

Abstract

The VP40 protein plays a critical role in coordinating the virion assembly, budding, and replication of the Ebola virus. Efforts have been made in recent years to understand various aspects of VP40 structure, dynamics, and function such as assembly of the protein and its roles in virus replication and penetration of the protein into the plasma membrane. A major conformational transformation is necessary for VP40 to form some of its oligomeric structures and to perform various functions. This conformational change from a compact structure with the N-terminal domain (NTD) and C-terminal domain (CTD) closely associated involves a dissociation or springing-out of the CTD from the NTD. We perform investigations using computational molecular dynamics simulations as well as knowledge-based Monte Carlo simulations. We find that a sharp springing of the CTD from the NTD in a free VP40 protein cannot occur solely by random thermal fluctuations without intermediate oligomerized segments, and therefore is likely triggered by additional molecular events.

Country
United States
Keywords

570, Cell biology, Computational chemistry, Medical Sciences, databases, Protein domain, conformational dynamics, QC1-999, VP40, Biophysics, 610, Medical Biochemistry, FOS: Health sciences, Molecular dynamics, Biochemistry, Gene, Computational biology, computational methods, Ebola virus, thermal fluctuations, Health Sciences, Medicine and Health Sciences, Genetics, viruses, Biology, cell membranes, Ecology, Physics, crystal lattices, Ebola Virus Research and Outbreaks, Gastrointestinal Viral Infections and Vaccines Development, Monte Carlo methods, Ecology and Evolution of Viruses in Ecosystems, proteins, molecular dynamics, Molecular Detection, Virus, Chemistry, Infectious Diseases, FOS: Biological sciences, Environmental Science, Physical Sciences, Protein structure, Medicine

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Average
gold