
doi: 10.1063/1.4878485
Many electrochemical energy storage technologies utilize anodes that are specific to the chemistry of the device. Anodes must be designed for devices including primary and secondary batteries, fuel cells and capacitors. These applications include a diverse range of operational conditions, including aqueous, solid or organic media. This paper will provide a brief overview of anode technologies for medium (e.g. electric and hybrid electric vehicles) and large (e.g. integration of renewable energy generation to electrical networks) battery applications. Established and developing storage technologies will be discussed to provide an insight into how anodes (materials, manufacturing processes and modes of operation) differ between specific applications and devices. Lead-acid batteries are used as a case study to provide a practical example and guide discussion onto the question of future challenges and opportunities.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
