
doi: 10.1063/1.4801273
Several alternative dichotomous Item Response Theory (IRT) models have been introduced to account for guessing effect in multiple-choice assessment. The guessing effect in these models has been considered to be itemrelated. In the most classic case, pseudo-guessing in the three-parameter logistic IRT model is modeled to be the same for all the subjects but may vary across items. This is not realistic because subjects can guess worse or better than the pseudo-guessing. Derivation from the three-parameter logistic IRT model improves the situation by incorporating ability in guessing. However, it does not model non-monotone function. This paper proposes to study guessing from a subject-related aspect which is guessing test-taking behavior. Mixture Rasch model is employed to detect latent groups. A hybrid of mixture Rasch and 3-parameter logistic IRT model is proposed to model the behavior based guessing from the subjects' ways of responding the items. The subjects are assumed to simply choose a response at random. An information criterion is proposed to identify the behavior based guessing group. Results show that the proposed model selection criterion provides a promising method to identify the guessing group modeled by the hybrid model.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
