
doi: 10.1063/1.4770047
The complexity of the fractional Brownian motions is investigated from the viewpoint of information geometry. By introducing a Riemannian metric on the space of their power spectral densities, the geometric structure is achieved. Based on the general construction, for an example, whose power spectral density is obtained by use of the normalized Mexican hat wavelet, we show its information geometric structures, e.g., the dual connections, the curvatures, and the geodesics. Furthermore, the instability of the geodesic spreads on this manifold is analyzed via the behaviors of the length between two neighboring geodesics, the average volume element as well as the divergence (or instability) of the Jacobi vector field. Finally, the Lyapunov exponent is obtained.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
